Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials

نویسندگان

  • Jichun Li
  • Jan S. Hesthaven
چکیده

In this paper, we develop a nodal discontinuous Galerkin method for solving the timedependent Maxwell’s equations when metamaterials are involved. Both semiand fully-discrete schemes are constructed. Numerical stability and error estimate are proved for both schemes. Numerical results are presented to demonstrate that the method is not only efficient but also very effective in solving metamaterial Maxwell’s equations. Mathematics Subject Classification (2000): 78M10, 65N30, 35L15.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Nodal Discontinuous Galerkin Finite Element Method for 2d Nonlinear Elastic Wave Propagation

In order to solve the elastic wave equation in heterogeneous media with arbitrary high order accuracy in space on unstructured meshes, a nodal Discontinuous Galerkin Finite Element Method (DG-FEM) is presented, which combines the geometrical flexibility of the Finite Element Method and strongly nonlinear wave simulation capability of the Finite Volume Method. The equations of nonlinear elastody...

متن کامل

Optimal non-dissipative discontinuous Galerkin methods for Maxwell's equations in Drude metamaterials

Abstract. Simulation of electromagnetic wave propagation in metamaterials leads to more complicated time domain Maxwell’s equations than the standard Maxwell’s equations in free space. In this paper, we develop and analyze a non-dissipative discontinuous Galerkin (DG) method for solving the Maxwell’s equations in Drude metamaterials. Previous discontinuous Galerkin methods in the literature for...

متن کامل

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

This paper deals with a high-order accurate Runge Kutta Discontinuous Galerkin (RKDG) method for the numerical solution of the wave equation, which is one of the simple case of a linear hyperbolic partial differential equation. Nodal DG method is used for a finite element space discretization in ‘x’ by discontinuous approximations. This method combines mainly two key ideas which are based on th...

متن کامل

Discontinuous Galerkin methods for Maxwell’s equations in Drude metamaterials on unstructured meshes

In this follow-up work, we extend the discontinuous Galerkin (DG) methods previously developed on rectangular meshes [18] to triangular meshes. The DG schemes in [18] are both optimally convergent and energy conserving. However, as we shall see in the numerical results section, the DG schemes on triangular meshes only have suboptimal convergence rate. We prove the energy conservation and an err...

متن کامل

Galerkin Finite-Element Method for the Analysis of the Second Harmonic Generation in Wagon Wheel Fibers

The nonlinear effects of the second harmonic generation have been investigated for the propagation of light along the axis of fibers of wagon wheel cross sectional shape. Nodal finite element formulation is utilized to obtain discretized Helmholtz equations under appropriate boundary conditions. The hierarchical p-version nodal elements are used for meshing the cross section of wagon wheel fibe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 258  شماره 

صفحات  -

تاریخ انتشار 2014